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1. Introduction

Although torsion balance measurements are obsolete in gravity
prospecting, the Eotvos torsion balance remains a useful conceptual device in
tneveetical geodesy. Indeed it may be employed to measure the curvature
differences and gravity gradients which are essentially the components of the
Marussi tensor of geopotential gravity gradients.

Following Hotine (1969) let N denote the geopotential function for the
Earth which is assumed to be rotating with a constant angular velocity ;.
Points having a common value of N, say a constant C, are said to lie on a
gecpotential N-surface, N(xl, xz, x3) = C, where xt are rectilinear
Cartesian coordinates in Euclidean 3-space. The gradient of N, denoted by
Nr’ satisfies the bnsic gradient equation

NL’ =no (1.1)
where n is the magnitude of the acceleration due to gravity, and v is an
upward pointing unit normal to the N-surface. Thus, although Nr is the
gravity vector of the Earth, by Hotine'’s convention in order to give it a
downward pointing direction it is necessary to take n = -g. We will simply
retain n in our discussion. The gravity gradients are then given by the
components of the Maiussi tensor, i.e.

N & = Nr,s =ngn 4o (1.2)
where the comma denotes covariant differentiation with respect to the flat
space metric of Euclidean 3-space. The external geopotential field N of the
Earth then satisfies the field equation

AN=—2(,~)2, (1.3)
where A is the flat 3-dimensional Laplacian operator, and this together with

che Bruns eqguation

(1og n) " = =" = 2 (1.4)

r




reduces the number of independent components of the (symmetri~) Marussi tensor
from six to five. Thus, as Marussi (1949) showed, the metrical properties of
the Earth's geopotential field are completely described by five functions

which Hotine (1969) denoted by and called the curvature

kyrTge pepr
parameters., An explicit identification of these curvature parameters will be
given in Section 3.

An immediate questicn arises as to how in practice these curvature
parameters can be measured. Both Marussi and Hotine suggested that this could
be done by employing the Eotvos torsion balance and the latter worked out the

corresponding theory in Hotine (1957, pages 9-10) and Hotine (1969, pages

150-151). In the latter reference he commented that

“Measurement in several azimuths will accoirdingly determine hl - hz,
tyr Ty Ty and some instrument constants, but will not separate hl and
kz. To do this, we need an additional form of measurement."

Hotine then discussed possibilities for more refined measurements and
gave several references. The general theory was analyzed exhaustively in
Mueller (1960), and Mueller (1963). The general conclusion is that the
inability to distinguish, i.e. measure, hl and hz separately is a physical
limitation imposed by the use of the Eotvus torsion balance.

In the present paper we will show by employing some tensorial methods
recently developed by the author in Zund (1988a, 1988b) that the average
curvature differences i(kz - kl)/Z occur in expressions for the fourth and
fifth fundamental tensors. This suggests that the above limitation may have a
geometrric origin since these tensors naturally arise in the differential
geometry of the N-surfaces. In Section 2 we briefly review the relevant

material from our papers which is required in this study. These results are

reformulated in the 2-leg representation in Section 3, and finally in an




Appendix we exhibit an explicit 2-leg representation when the N-surfaces are
spheroids.

In our discussion, unless specified to the contrary, our notation and
terminology follows that employed in Hotine (1969), although this is slightly
different from the purely mathematical presentation in Zund (1988a, 1988b).
Special note should also be made of the elegant expose of the differential
geometry of the gravity field recently given by &.W. Grafarend (1986) in this

journal.

2. The Fourth and Fifth Fundamental Tensors and Invariant Curvatures.

It is well known that the intrinsic and extrinsic differential geometry

of surfaces which are isometrically imbedded in Euclidean 3-space can be

described by three fundamental tensors: a ., b ., c -; and two invariant
afd aft af’
curvatures: the Ganuss (ftotal) cuwrvature K and the Germain (mean) curvature

H. However, one can also introduce a fourth and fifth fundamental tensor and
two additional invariant curvatures. These quantities are implicit in the
work of the Soviet school of tensor analysis created by V.F. Kagan
(1869-1953). Unfortunately, much of this work is little known or available in
the West, but recently in Zund (1988a, 1988b) we have presented a unified
exposition and generalization of some of this work. We now review those

results which are useful in the differential geodesy of the Eotvios torsion

balance.
We begin with the Euler tensor
h ,: =¢"a b (2.1)
0'3 ap BO
which occurs in the equation
h A"\ =0 (2.2)
afl
3




which defines the principal directions »' on a surface, see McConnell (1931,
page 212). The Euler tensor {(2.1) has no privileged symmetry, although only
its symmetric part contributes to defining the principal directions. If this

tensor is decomposed into its symmetric and skew-symmetric parts, then we

obtain
haﬂ = daﬁ * Hﬁaﬁ
where d . =4d is the fourth fundamental tensor. It was employed by S.G.

af Ba

Gasparyan (1961) in a beautiful memoir on the bending of surfaces which leaves
the Gaussian curvature invariant, however, we believe it was known many years
earlier by geometers of the Moscow school. Hence, it is probably appropriate
to call it the Kagan tensor. One can also formally introduce a fifth

fundamental tensor faﬁ which can be expressed in the form

f = Ha

af3 o bnﬁ (2.4)

Note that ﬁ)ﬁ is obviously symmetric, and by virtue of its interpretation in
differential geodesy given in Section 3 we call it the Eoctuvds tensor. The
detailed geometric and algebraic properties of these tensors are given in Zund
(1988a, 1988b).

The two additional invariant curvatures are defined by

E: = H" - K, (2.5)
2
F: = 2H ~ K, (2.6)
and are called the Euler and Monge curvatures respectively. Up to a numerical

factor of one half, F 1is the Casorati curvature of Marussi (1951; 1985 page

19). Each of the invariant curvatures can be expressed tensorially, i.e.

M= PP (2.7)
afy pa




AL ¢}
6<r(ﬁ

2K = , (2.8)
af3 po
2k = a"a¥a a -, (2.9)
af3 po
2F = a"ab b . (2.10)
a3 po
An equivalent expression for (2.7) is 2H = aaﬁb which shows that the

af

Eotves tensor is traceless.

3. Hetine’s 2-Leg Representation.

Following Grafarend (1986) we call a pair of orthogonal unit surface

vectors a 2-leg. In accord with the notation of Chapters 6 and 7 of Hotine

(1969), we denote the contravariant components of the 2-leg by {Pa, jn} with
r r,a .r r.a . .

e o= xaP b3 =X ] being the corresponding space vectors. In the latter

expressions, xg: = er/ax” where the xt are rectangular Cartesian

coordinates in Euclidean 3-space, and x* denote curvilinear coordinates,
i.e. parameters, on the N-surfaces. This 2-leg may be extended to a 3-leg of

5, jr, n') by including the unit normal vt to the

space vectors {#
N-surfaces. Then the 2-legs {Pr, vr}, {jr, nr} define planes which are said
to be sections of the N-surfaces.

As a consequence of the orthogonality conditions of the 2-leg, the Levi-

Civita permutation tensor has the 2-leg representation

€ = ¢

af3 ajﬂ (3.1)

]QPﬂ .
The fundamental surface tensors are then readily found to have the

representations:
a

3 = fufp t Iadp (3.2)

b"f‘ - blpupﬂ * 'l(pnjﬂ * j”/’”) * "‘2juj{3 ' (3.3)




2, . . 2. .
C”[‘ = f-l[)”f” + (}.l + )2“1“'(731" 1 ]u/[i" + }-Zjujw , {3.4)
where bl' '\‘2 are the normal curvatures, and 'l' t. = —!l are the grodesic

torsions of the N-surface in the directions e, 3. 1he remaining two

r
curvature parameters Ty v, oare related to the -~urvature of the normal »n

&

in the directions %, jr and do not depend on the fundamental tensors.

The corresponding expressions for the invariant curvatures of the

N-surfacos are given by

H = (.’-:l +}-‘2),'2 , (3.5)

ko 2 3.6

Komhghy =ty (3.6)

2 2 |

E = ()vl —]vz) 4+ 'l , (3.7)
2.2 2

F=(141+12),2+r1. (3.8)

The 2-leg representations for the Kagan and Ectvos tensors are then found to

be
Iez—hl
dﬂﬁ = thQPﬁ + ( 3 )(P”]“ + ]”PB) + 03,3 (3.9)
hz—h 1
faﬁ = (——5———)(PUP” =3 ’l(pn]ﬁ + ]OP”) , (3.10)

and hence the Euler tensor has the representation

h = t,(0 #

- 11.°5 + jajﬁ) + thnjﬁ -k

oy - (31D

Note that these representations show that in general neither qﬂ* nor mﬂi

a2 traceless, viz both have the trace 2'1' while as mentioned previously

faﬁ is always traceless.
Equations (3.9), (3.10) indicate the first evidence of the relationship

between the curvature differences and the Kagan and Eotvos tensors. This




appearance is of course due to our choice of the 2-leg, but aside from the
orthogonality requirement the 2-legq {# , j } 1is quite general. Indeed, if

%4 4

. . . a e . .
this requirement were relaxed, and the unit vectors & , j were inclined to

§] a.f3

each other at an angle 0 < d < m, then aunﬁnj = cos 0, (GHP j = sin 6, and
nur previous expressions would contain additional trigonometric functions but
nc new curvature parameters would occur. Thus the relationship between the
curvature differences and these tensors is not essentially a consequence of a
special:ization of the Z-leg.

However, by a further natural specialization of the 2-leg, this
representation can be put in a more transparent and striking form. This
additional specialization in olves choosing a 2-leg in which thc normal
~urvatures Ll’ bz assume their maximum and minimum values. Such a 2-leg is
called a principal 2-leqg, the corresponding vectors are principal directions,

and the secticns cf the N-surfaces jrincipal sections. Following Hotine

1969, paae 42) these vectors are denoted by u', v' and relative to this

2-leg, )~‘1, P~‘2 reduce to the principal curvatures Kyr Ko and ty = 0.
Algebraically this specialization makes o, V] eigenvectors of the
fundamental tensors a,, b, ¢ ., d , and £ _. The principal 2-leq
orfi af3 af? afs af3
representations of these tensors are thus:
a”[s = unu” + v”v[i , (3.12)
i alu”uﬁ + KZVOVH . (3.13]
2 ,
Qﬂi KIQS#** KZ%fﬁi’ (3.14)
[
21
oaf3 ( 2 )(U”Vn * V”U{;) ! (3.15)
[N Koy K
2 1, 172
qﬁ‘ = (——5——>q'u“ + (—-—Z———)v”v[i , (3.16)




and this representation explicitly exhibits the eigenualues of these tensors

in terms of the principal curvatures. Of course, this eigenvector-eigenvalue

propert: does not hold for either the Levi-Civita tenscr
(7(76 = U”‘Jl” - V”U” ' (3.17)
or the Euler tensor
V., - K.V Uu. . (3.18)

B = <%V ~ %1V

Higher order powers of the principal curvatures may occur, for example in

2Hc - Kb = x3

. 3
afy af et s B M

3
but the analysis given in Zund (1988b) suggests that such combinations of the
fundamental tensors have no particular geometric significance.

Although the Kagan tensor (3.15) involves a curvature difference, the
Eotvos tensor (3.16) is more interesting since in terms of its principal 2-leg
representation it exhibits both curvature differences. Indeed, this is why we
refer tc this lensor as the Eotvos tensor. It should be noted that with
characteristic modesty Marussi (1931, 1985) always referred to N o i.e. our
(1.2), as the Eotvos tensor, but most mathematical geodesists have followed
Hotine’s custom of calling the latter the Marussi tensor. Note that since

K for a sphere, the Kagan and Eotvos tensors in differential geodesy

172
essentially measure the deviation of the spheroidal N-surfaces from perfect
spherical form. The appearance of the curvature differences in these tensors
is surprising since both tensors have a purely geometric origin. It also
c1ggests that Hotine’s observation quoted in Section 1 is not merely a
physical limitation imposed by employing torsion balance mcasurements, but a

geometric limitation arising from the geometry of the N-surfaces. An

additional reason for this can be found in Hotine (1969, p. 44) where it is




shown that the principal 2-leg representation of the Codazzi-Mainardi

equations leads to the equations

where o, a are the geodesic curvatures of the principal directions ut, Vv
respectively.

An excellent classical discussion, without using tensors, is given in
Slotnick (1932), and it is reviewed with reference to geophysical prospecting
in Dobrin (1960, pp. 180-183).

We believe that the above discussion indicates not only a connection
between the torsion balance and differential geometry, but also the advantages
of the 2-leg approach to differential geodesy. This approach was implicit in
the work of Marussi and Hotine, however, their exposition of it failed to
emphasize that it is a coordinate-free method and that it is conceptually
distinct from the classical coordinate approach to tensors. In the 2-leg
approach, as we will 1illustrate in the following Appendix, the ré6le of
coordinates is a secondary one and the resulting coordinates have a natural
interpretation. In effect one makes a physical, or geometrical, choice of a
2-leg, which involves measurable quantities and then introduces a coordinate
system based on the 2-leg. This is of course classically the notion of
physical  components of vectors/tensors as contained in the appendix of
McConnell (1931), however, only the modern approach to tensors makes this
procedure natural. Both Marussi and Hotine realized the advantages of the
2-leg formalism, but were unable to separate it from their primary goal of

finding intrinsic coordinate systems.




4. Appendix. Explicit Calculations on the Spheroid.

We now exhibii {he components of the fundamental tensor, the Euler
tensor, and the principal 2-legs when the N-surfaces are spheroids, i.e.,
ellipsoids of revolution about the x3—axis having semi-axes a > b. Following
Hotine (1969), we take the curvilinear surface coordinates (parameters) to be
x? = (0, @) where « is the longitude and @ the latitude 0 ¢ w < 2w,

-r/2 ¢ @ « m/2. Then the first fundamental form becomes

as’ = pleosPoan? + piw’ (A.1)
where pyto= l/kl, Pyt = l/kz, are the principal radii of curvature where
Ky = -(1 - ezsinzw)l/z/a ' (A.2)
Ky = -(1 - ezsin2®)3/2/a(l ~ e2) , (A.3)

and e 1is the eccentricity
eZ: = (a2 - bz)/a2 . (A.4)

In the remainder of our discussion it will be convenient to employ Ky
Koy OF Py Py in place of the above explicit values. Then the components of

the first fundamental tensor are given by

picoszw , 0
ila Il = (A.5)
afs 0 )2
’ ’2
and by (3.12) the components of the principal 2-leg are
u; = -p cos g, u, = 0 ; (A.6)
vy = 0, Vo = Py i (A.7)
and
ul = -x.sec ¥ , uz =0 ; (A.8)

10




ve o= 0, v = -y - (A.9)

The components of the remaining fundamental tensors are then

K picoszﬂ . 0

1
”bnn” = . 2 l ; (A.10)
r K2P2
xipicoszw , O
"Caﬁ" = 0 K2 2 ; (A.11)
r Kol
K A=K
0 P 22 l)plnzcos a
K =K
i N = H
dnﬁ (—271—)nln2cos a, 0
(A.12)
K A—K
21, 2 2
( 5 )plCOS 0, 0
NE N = K12, 2 2 ;
af3 0 , (——7——)p2COS (1)
(A.13)
and the Euler tensor has components
0 p,CoS 7 I
ith ”H = . (A.14)
a cos @ , 0
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